A Note About The New Foundation of Knowledge


Being conscious is the central fact of human experience. Yet, it is not presently known what consciousness is and what it does. For example, Physicalism, the currently dominant theory of knowledge takes the position that the non-conscious brain can do anything that the conscious brain can do. Artificial intelligence (AI) takes a similar view, that the digital computer can do anything that the conscious brain can do. In short, consciousness is deemed to be evolutionary fluke. This book shows that the innateness of mental faculties is an empirical fact and establishes the reality and centrality of consciousness. Physics is considered to be the most basic science. However, how we get to know the physical world is a more basic question. Until recently, the central issue was this: are sensations innate, or they imported from the senses into the brain? We now know that sensations are innate. They are not imported into the brain from the senses or from the outside world through the senses. Consider sound. Recently, children born deaf have been made to experience sensations of sound by the electrical stimulation of hearing-related brain areas. This fact proves that the sensation of sound is innate and that it is not a property of air vibration. Present-day neuroscience takes all sensations to be innate. Thus, the direct electrical stimulation of vision-related brain areas in children born blind would elicit sensations of light. I expect such experiments to take place within five years. It would prove that the sensation of light is innate, private, and not a property of electromagnetic radiation. For the last 300 years, theories of knowledge are based on the directly opposite assumption that no sensation is innate. It is now necessary to bring the foundation of knowledge up to date.

Available on Amazon.  

Available on Amazon.

 

Two related patents for sale (Identifying the NCC)

Daniel Alroy

June 9, 2017

 

In 2001 I filed with the United States Patent Office a patent application for concepts and methods for identifying brain cells that determine the qualitative aspect of simplest sensations. It resulted in two granted patents. 

The first patent, Number 7,680,602 titled Concepts and methods for identifying brail correlates of elementary mental states was granted in 2010. It involves identifying locus-specific cells that determine the qualitative aspect of the simplest sensations. The second patent, Number 8,112,260 titled Methods for identifying protein specificity of brain cells that evoke a given mental state that does not contain smaller constituents was granted in 2012. It involves identifying methods for identifying the unique protein specificity of the so-identified cells. 

 

The three basic tenets on which the patents are based are:

1.  The simplest sensations are innate and are evoked by the brain.

2.  Their qualitative aspects are determined by locus-specific cells.

3.  The primary determinant of the intrinsic function of a cell is its proteome.

 

I review the involved conceptual framework in The New Foundation of Knowledge (2017).  

I am now offering these two patents for sale. I would be willing to provide, for a time, consulting on how these patents can be the basis for additional related patent applications.

 

A 3-Part Project – Each Deserving its Own Nobel Prize

Daniel Alroy

May 7, 2017

1.

The challenge

Neuroscience has established that sensations, including those by which the physical world is knowable, are innate. The implication that the sensation of color is innate and evoked by the brain, rather than received from the eyes or being an aspect of the electromagnetic spectrum, is counterintuitive. More jarring still is that the same applies to the sensation of light. Commonsense rebels against the notion that the sensation of light is innate and as such private, or phenomenal.

Even Newton, who conceded that experienced color is brought about by the “sensorium” and contending that achromatic white light is a combination of colors, could not bring himself to make explicit the conclusion that the sensation of light, like that of color, is “sensorium”- dependent. This reluctance or inability to make explicit the implication that since the sensations of color are innate and phenomenal, so are the sensations of brightness and lightness. 

This is the very reason that identifying the molecular and cellular determinants of the sensation of light (i.e. applying the notion of neural correlates of consciousness to the sensation of light) will have a shocking impact on the knowledge enterprise.  

2.

The three phases of the undertaking

 

2.1

First, it is necessary to prove the sensation of light is innate. The direct electrical stimulation of the visual cortex of persons that are not cortically blind elicits sensations of light (phosphenes). This has been demonstrated in normally seeing persons and in persons who lost their vision. It remains to be demonstrated that the same is true in the case of born blind children.

Such a procedure is both possible and necessary in order to provide such children with cortical visual prosthetics. Such prosthetics have been developed (Dobelle 2000) and confirming that the electrical stimulation of the visual cortex does elicit the sensations of light in persons who lost their vision. Recently I urged some organizations to test such cortical visual prostheses on children born blind. I believe that by 2020 such tests would confirm that these cortical visual prostheses elicit sensations of light in the born blind.

2.2

Next, it is necessary to identify the locus-specific cells of interest. It is known that a lesion in the color area in the visual cortex can leave a person completely colorblind but leave intact the sensation of light and dark as well as visual sensation of motion direction. Current literature does not yet identify the brain locus that evokes the sensation of light

The following conceptual framework resolves this issue, making it accessible to empirical verification:  any cells or circuits that create an illusion of a given sensation are those that evoke that sensation under normal circumstances.  

Specifically, it is necessary to identify in the visual cortex locus-specific cells that are selectively activated if, and only if, the subject experiences a sensation of light through external or direct electrical stimulation. Anna Wang Roe, et al (2005) identified cells in the thin stripes of visual area V2 that are directly involved in producing a brightness illusion. Hence, visual area V2 is one of the areas of the visual cortex containing cells and circuits that evoke a sensation of light.

2.3

A cell type’s proteome is a determinant of intrinsic function. The morphology of a neuron, as in any cell type of a given organism, is determined primarily by its continually-expressed proteins. Thus, here exists a unique proteome characteristic of cells that evoke the sensation of light. Present day single-cell sequencing techniques make it possible to identify the unique proteome of the cells of interest.

3.

Conclusion. I believe that meeting the challenge of any of the three phases would justify a Nobel Prize. Meeting all three phases would bring to an end the era that began with Locke and Hume, based on the denial of innate sensations emotions and cognitions, and mark the advent of a new era regarding the nature of consciousness.

 

 

Quote of the Week

 

300x300.jpg

Nicomachus (60 - 120 A.D)

“All things that have been arranged by nature according to a workmanlike plan appear, both individually and as a whole, as singled out and set in order by Foreknowledge and Reason, which created all according to Number, conceivable to mind only and therefore wholly immaterial; yet real; indeed, the really real, the eternal.”

Quoted in Number, The Language of Science, Tobias Dantzig. 4th edition 1954

© 2016 Daniel Alroy